
MODULE-2

Software Requirements Engineering

Requirements Analysis

Requirement analysis is significant and essential activity

after elicitation. We analyze, refine, and scrutinize the

gathered requirements to make consistent and

unambiguous requirements.

 This activity reviews all requirements and may provide a

graphical view of the entire system.

 After the completion of the analysis, it is expected that the

understandability of the project may improve significantly.

Here, we may also use the interaction with the customer to

clarify points of confusion and to understand which

requirements are more important than others.

The various steps of requirement analysis are shown in

fig:

(i) Draw the context diagram: The context diagram is a

simple model that defines the boundaries and interfaces of

the proposed systems with the external world. It identifies

the entities outside the proposed system that interact with

the system. The context diagram of student result

management system is given below:

(ii) Development of a Prototype (optional): One

effective way to find out what the customer wants is to

construct aprototype, something that looks and preferably

acts as part of the system they say they want.

We can use their feedback to modify the prototype until

the customer is satisfied continuously. Hence, the

prototype helps the client to visualize the proposed

system and increase the understanding of the

requirements. When developers and users are not sure

about some of the elements, a prototype may help both the

parties to take a final decision.

Some projects are developed for the general market. In

such cases, the prototype should be shown to some

representative sample of the population of potential

purchasers. Even though a person who tries out a

prototype may not buy the final system, but their feedback

may allow us to make the product more attractive to

others.

The prototype should be built quickly and at a relatively

low cost. Hence it will always have limitations and would

not be acceptable in the final system. This is an optional

activity.

(iii) Model the requirements: This process usually

consists of various graphical representations of the

functions, data entities, external entities, and the

relationships between them. The graphical view may help

to find incorrect, inconsistent, missing, and superfluous

requirements. Such models include the Data Flow

diagram, Entity-Relationship diagram, Data Dictionaries,

State-transition diagrams, etc.

(iv) Finalise the requirements: After modeling the

requirements, we will have a better understanding of the

system behavior. The inconsistencies and ambiguities

have been identified and corrected. The flow of data

amongst various modules has been analyzed. Elicitation

and analyze activities have provided better insight into the

system. Now we finalize the analyzed requirements, and

the next step is to document these requirements in a

prescribed format.

Functional vs Non Functional Requirements

Requirements analysis is very critical process that enables

the success of a system or software project to be assessed.

Requirements are generally split into two

types: Functional and Non-functional requirements.

Functional Requirements: These are the requirements

that the end user specifically demands as basic facilities

that the system should offer. All these functionalities need

to be necessarily incorporated into the system as a part of

the contract. These are represented or stated in the form

of input to be given to the system, the operation

performed and the output expected. They are basically the

requirements stated by the user which one can see

directly in the final product, unlike the non-functional

requirements.

Non-functional requirements: These are basically the

quality constraints that the system must satisfy according

to the project contract. The priority or extent to which

these factors are implemented varies from one project to

other. They are also called non-behavioral requirements.

They basically deal with issues like:

• Portability

• Security

• Maintainability

• Reliability

• Scalability

• Performance

• Reusability

• Flexibility

Following are the differences between Functional and Non

Functional Requirements

Functional

Requirements

Non Functional

Requirements

A functional requirement

defines a system or its

component.

A non-functional

requirement defines the

quality attribute of a

software system.

It specifies “What should

the software system do?”

It places constraints on

“How should the

software system fulfill

the functional

requirements?”

Functional

Requirements

Non Functional

Requirements

Functional requirement

is specified by User.

Non-functional

requirement is specified

by technical peoples e.g.

Architect, Technical

leaders and software

developers.

It is mandatory. It is not mandatory.

It is captured in use case.

It is captured as a

quality attribute.

Defined at a component

level.

Applied to a system as a

whole.

Helps you verify the

functionality of the

software.

Helps you to verify the

performance of the

software.

Functional Testing like

System, Integration, End

to End, API testing, etc

are done.

Non-Functional Testing

like Performance,

Stress, Usability,

Security testing, etc are

done.

Functional

Requirements

Non Functional

Requirements

Usually easy to define.

Usually more difficult to

define.

Example

1) Authentication of user

whenever he/she logs

into the system.

2) System shutdown in

case of a cyber attack.

3) A Verification email is

sent to user whenever

he/she registers for the

first time on some

software system.

Example

1) Emails should be sent

with a latency of no

greater than 12 hours

from such an activity.

2) The processing of

each request should be

done within 10 seconds

3) The site should load

in 3 seconds when the

number of simultaneous

users are > 10000

Software Requirement Specification (SRS)

n order to form a good SRS, here you will see some points

which can be used and should be considered to form a

structure of good SRS. These are as follows : 1.

Introduction

• (i) Purpose of this document

• (ii) Scope of this document

• (iii) Overview

https://www.geeksforgeeks.org/software-engineering-quality-characteristics-of-a-good-srs/

2. General description 3. Functional Requirements 4.

Interface Requirements 5. Performance Requirements 6.

Design Constraints 7. Non-Functional Attributes 8.

Preliminary Schedule and Budget 9. Appendices Software

Requirement Specification (SRS) Format as name

suggests, is complete specification and description of

requirements of software that needs to be fulfilled for

successful development of software system. These

requirements can be functional as well as non-functional

depending upon type of requirement. The interaction

between different customers and contractor is done

because its necessary to fully understand needs of

customers.

Depending upon information gathered after interaction,

SRS is developed which describes requirements of

software that may include changes and modifications that

is needed to be done to increase quality of product and to

satisfy customer’s demand.

1. Introduction :

• (i) Purpose of this Document – At first, main

aim of why this document is necessary and

what’s purpose of document is explained and

described.

• (ii) Scope of this document – In this, overall

working and main objective of document and

what value it will provide to customer is

described and explained. It also includes a

description of development cost and time

required.

• (iii) Overview – In this, description of product is

explained. It’s simply summary or overall review

of product.

2. General description : In this, general functions of

product which includes objective of user, a user

characteristic, features, benefits, about why its

importance is mentioned. It also describes features of

user community.

3. Functional Requirements : In this, possible outcome

of software system which includes effects due to

operation of program is fully explained. All functional

requirements which may include calculations, data

processing, etc. are placed in a ranked order.

4. Interface Requirements : In this, software interfaces

which mean how software program communicates

with each other or users either in form of any

language, code, or message are fully described and

explained. Examples can be shared memory, data

streams, etc.

5. Performance Requirements : In this, how a

software system performs desired functions under

specific condition is explained. It also explains

required time, required memory, maximum error

rate, etc.

6. Design Constraints : In this, constraints which

simply means limitation or restriction are specified

and explained for design team. Examples may include

use of a particular algorithm, hardware and software

limitations, etc.

7. Non-Functional Attributes : In this, non-functional

attributes are explained that are required by software

system for better performance. An example may

include Security, Portability, Reliability, Reusability,

Application compatibility, Data integrity, Scalability

capacity, etc.

8. Preliminary Schedule and Budget : In this, initial

version and budget of project plan are explained

which include overall time duration required and

overall cost required for development of project.

9. Appendices : In this, additional information like

references from where information is gathered,

definitions of some specific terms, acronyms,

abbreviations, etc. are given and explained.

Uses of SRS document:

1. Devlopment team require it for developing product

according to the need.

2. Test plans are generated by testing group based on

the describe external behavior.

3. Maintenance and support staff need it to understand

what the software product is supposed to do.

4. Project manager base their plans and estimates of

schedule, effort and resources on it.

5. customer rely on it to know that product they can

expect.

6. As a contract between developer and customer.

7. in documentation purpose.

IEEE 830 Guidelines

It describes the content and qualities of a good software

requirements speciÞcation (SRS) and presents several

sample SRS outlines.

Like many IEEE standards for software engineering,

Standard 830 includes guidance and recommended

approaches for specifying software requirements. It's not

a complete tutorial on requirements development, but it

does contain some useful information. The bulk of the text

is a detailed suggested template for organizing the

different kinds of requirements information for a software

product -- an SRS.

The heart of the SRS consists of descriptions of

both functional and nonfunctional requirements. The IEEE

standard provides several suggestions of how to organize

functional requirements: by mode, user class, object,

feature, stimulus, functional hierarchy or combinations of

these criteria. There is no single organizational approach

that's best; use whatever makes sense for your project.

Decision Tree and Decision Table

Decision Tree

A Decision Tree is a graph that uses a branching method to

display all the possible outcomes of any decision.

https://www.techtarget.com/whatis/definition/functional-requirements

It helps in processing logic involved in decision-making,

and corresponding actions are taken.

It is a diagram that shows conditions and their alternative

actions within a horizontal tree framework.

It helps the analyst consider the sequence of decisions and

identifies the accurate decision that must be made.

Links are used for decisions, while Nodes represent goals.

Decision trees simplify the knowledge acquisition process

and are more natural than frames and rule knowledge

representation techniques.

Let’s understand this with an example:

Conditions included the sale amount (under $50) and

whether the customer paid by cheque or credit card. The

four steps possible were to:

• Complete the sale after verifying the signature.

• Complete the sale with no signature needed.

• Communicate electronically with the bank for credit

card authorization.

• Call the supervisor for approval.

 The below figure illustrates how this example can be

drawn as a decision tree. In drawing the tree.

Advantages of decision trees

• Decision trees represent the logic of If-Else in a

pictorial form.

• Decision trees help the analyst to identify the actual

decision to be made.

• Decision trees are useful for expressing the logic

when the value is variable or action depending on a

nested decision.

• It is used to verify the problems that involve a limited

number of actions.

Decision Tables

Data is stored in the tabular form inside decision tables

using rows and columns. A decision table contains

condition entries, condition stubs, action entries, and

action stubs. The upper left quadrant contains conditions.

The upper right quadrant contains condition alternatives

or rules. The lower right quadrant contains action rules,

and the lower-left quadrant contains actions to be taken.

Verification and validation of the decision table are much

easy to check, such as Inconsistencies, Contradictions,

Incompleteness, and Redundancy.

Example of Decision Table

Let's consider the decision table given in table 1.

In the table, there are multiple rules for a single Decision.

The rules from a decision table can be made by just

putting AND between conditions.

The major rules which can be extracted (taken out) from

the table are:

• R1 = If (working-day = Y) ^ (holiday = N) ^ (Rainy-

day = Y) Then, Go to office.

• R2 = If (working-day = N) ^ (holiday = N) ^ (Rainy-

day = N) Then, Go to office.

• R3 = If (working-day = N) ^ (holiday = Y) ^ (Rainy-

day = Y) Then, Watch TV.

• R4 = If (working-day = N) ^ (holiday = Y) ^ (Rainy-

day = N) Then, Go to picnic.

The above rules can be optimized by:

Optimized R1= If (working-day = Y) then Go to office

Or

Optimized R1= If (holiday = N) then Go to office

Optimized R3= If (working-day = N) ^ (Rainy-day = Y)

Then Watch TV

Or

Optimized R3= If (holiday = Y) ^ (Rainy-day = Y) Then

Watch TV

Optimized R4= If (working-day = N) ^ (Rainy-day = N)

Then go to the picnic.

Or

Optimized R4= If (holiday = Y) ^ (Rainy-day = N)

Then go to the picnic.

The tree given below is the resultant tree of Table 1.

The following rules are constructed from the decision tree

as shown below.

R1= If (Day = Working) ^ (Outlook = Rainy)

Then Go To Office

 R2= If (Day = Working) ^ (Outlook = Sunny)

Then Go To Office

 R3= If (Day = Holiday) ^ (Outlook = Rainy)

Then Watch TV

 R4=If (Day = Holiday) ^ (Outlook = Sunny)

Then Go To Picnic

In R1 and R2, there is no need to check the condition

Outlook = Rainy and Outlook = Sunny if day = working

because if the day is working, whether it is a sunny or

rainy day, the decision is to Go to the office. The following

rules are the optimized version of R1 and R2 above rules.

R1 optimized: If (Day = Working) Then Go To Office

R2 optimized: If (Day = Working) Then Go To Office

The refinement/optimization step result is effective,

efficient, and accurate rules.

Conversion of decision table into decision tree

Data can be transformed from a decision table into a tree

structure. The decision table can be converted into a

decision tree by using the conversion method discussed or

some other technique. The resultant tree has two

categories: balanced trees and unbalanced trees. The

figure shows the input and output of the conversion

process.

Advantages of a Decision tree over Decision table

• The decision tree takes advantage of the sequential

structure of decision tree branches to notice the order

of checking conditions and executing actions

immediately.

• Decision tree is used to verify the problems that

involve a limited number of actions.

• All those actions and conditions that are critical are

connected directly to other conditions and actions,

whereas the conditions that do not matter are absent.

In other words, the trees do not have to be

symmetrical.

• Decision tree is helpful to express the logic when the

value is variable, or action is dependent on the nested

decision.

Difference between Decision Table and Decision
Tree:

S.

No. Decision Table Decision Tree

1.

Decision Tables are a

tabular representation of

conditions and actions.

Decision Trees are a

graphical representation of

every possible outcome of a

decision.

2.

We can derive a decision

table from the decision

tree.

We can not derive a

decision tree from the

decision table.

3.

It helps to clarify the

criteria.

It helps to take into account

the possible relevant

outcomes of the decision.

4.

In Decision Tables, we

can include more than

one ‘or’ condition.

In Decision Trees, we can

not include more than one

‘or’ condition.

5.

It is used when there are

small number of

properties.

It is used when there are

more number of properties.

6. It is used for simple It can be used for complex

S.

No. Decision Table Decision Tree

logic only. logic as well.

7.

It is constructed of rows

and tables.

It is constructed of branches

and nodes.

8.

The goal of using a

decision table is the

generation of rules for

structuring logic on the

basis of data entered in

the table.

A decision tree’s objective

is to provide an effective

means to visualize and

understand a decision’s

available possibilities and

range of possible outcomes.

Structured Analysis and Design

Software Design Process

The design phase of software development deals with

transforming the customer requirements as described in

the SRS documents into a form implementable using a

programming language. The software design process can

be divided into the following three levels of phases of

design:

1. Interface Design

2. Architectural Design

3. Detailed Design

Elements of a System:

1. Architecture – This is the conceptual model that

defines the structure, behavior, and views of a system.

We can use flowcharts to represent and illustrate the

architecture.

2. Modules – These are components that handle one

specific task in a system. A combination of the

modules makes up the system.

3. Components – This provides a particular function or

group of related functions. They are made up of

modules.

4. Interfaces – This is the shared boundary across

which the components of a system exchange

information and relate.

5. Data – This is the management of the information and

data flow.

Interface Design: Interface design is the specification

of the interaction between a system and its environment.

this phase proceeds at a high level of abstraction with

respect to the inner workings of the system i.e, during

interface design, the internal of the systems are

completely ignored and the system is treated as a black

box. Attention is focused on the dialogue between the

target system and the users, devices, and other systems

with which it interacts. The design problem statement

produced during the problem analysis step should identify

the people, other systems, and devices which are

collectively called agents. Interface design should include

the following details:

• Precise description of events in the environment, or

messages from agents to which the system must

respond.

• Precise description of the events or messages that the

system must produce.

• Specification of the data, and the formats of the data

coming into and going out of the system.

• Specification of the ordering and timing relationships

between incoming events or messages, and outgoing

events or outputs.

Architectural Design: Architectural design is the

specification of the major components of a system, their

responsibilities, properties, interfaces, and the

relationships and interactions between them. In

architectural design, the overall structure of the system is

chosen, but the internal details of major components are

ignored. Issues in architectural design includes:

• Gross decomposition of the systems into major

components.

• Allocation of functional responsibilities to

components.

• Component Interfaces

• Component scaling and performance properties,

resource consumption properties, reliability

properties, and so forth.

• Communication and interaction between

components.

The architectural design adds important details ignored

during the interface design. Design of the internals of the

major components is ignored until the last phase of the

design. Detailed Design: Design is the specification of the

internal elements of all major system components, their

properties, relationships, processing, and often their

algorithms and the data structures. The detailed design

may include:

• Decomposition of major system components into

program units.

• Allocation of functional responsibilities to units.

• User interfaces

• Unit states and state changes

• Data and control interaction between units

• Data packaging and implementation, including issues

of scope and visibility of program elements

• Algorithms and data structures

High level and detailed design

1. High Level Design :

High Level Design in short HLD is the general system

design means it refers to the overall system design. It

describes the overall description/architecture of the

application. It includes the description of system

architecture, data base design, brief description on

systems, services, platforms and relationship among

modules. It is also known as macro level/system design. It

is created by solution architect. It converts the

Business/client requirement into High Level Solution. It is

created first means before Low Level Design.

2. Low Level Design :

Low Level Design in short LLD is like detailing HLD means

it refers to component-level design process. It describes

detailed description of each and every module means it

includes actual logic for every system component and it

goes deep into each modules specification. It is also known

as micro level/detailed design. It is created by designers

and developers. It converts the High Level Solution into

Detailed solution. It is created second means after High

Level Design.

Difference between High Level Design and Low Level

Design :

S.No. HIGH LEVEL DESIGN LOW LEVEL DESIGN

01.

High Level Design is the

general system design means

it refers to the overall system

design.

Low Level Design is

like detailing HLD

means it refers to

component-level

design process.

02.

High Level Design in short

called as HLD.

Low Level Design

in short called as

LLD.

S.No. HIGH LEVEL DESIGN LOW LEVEL DESIGN

03.

It is also known as macro

level/system design.

It is also known as

micro

level/detailed

design.

04.

It describes the overall

description/architecture of

the application.

It describes

detailed

description of each

and every module.

05.

High Level Design expresses

the brief functionality of

each module.

Low Level Design

expresses details

functional logic of

the module.

06.

It is created by solution

architect.

It is created by

designers and

developers.

07.

Here in High Level Design

the participants are design

team, review team, and client

team.

Here in Low Level

Design participants

are design team,

Operation Teams,

and Implementers.

S.No. HIGH LEVEL DESIGN LOW LEVEL DESIGN

08.

It is created first means

before Low Level Design.

It is created second

means after High

Level Design.

09.

In HLD the input criteria is

Software Requirement

Specification (SRS).

In LLD the input

criteria is reviewed

High Level Design

(HLD).

10.

High Level Solution converts

the Business/client

requirement into High Level

Solution.

Low Level Design

converts the High

Level Solution into

Detailed solution.

11.

In HLD the output criteria is

data base design, functional

design and review record.

In LLD the output

criteria is program

specification and

unit test plan.

Coupling and Cohesion

Coupling and Cohesion are two key concepts in software

engineering that are used to measure the quality of a

software system’s design.

Coupling refers to the degree of interdependence

between software modules.

 High coupling means that modules are closely connected

and changes in one module may affect other modules.

Low coupling means that modules are independent and

changes in one module have little impact on other

modules.

Cohesion refers to the degree to which elements within a

module work together to fulfill a single, well-defined

purpose.

High cohesion means that elements are closely related and

focused on a single purpose, while low cohesion means

that elements are loosely related and serve multiple

purposes.

Both coupling and cohesion are important factors in

determining the maintainability, scalability, and reliability

of a software system. High coupling and low cohesion can

make a system difficult to change and test, while low

coupling and high cohesion make a system easier to

maintain and improve.

Basically, design is a two-part iterative process. First part

is Conceptual Design that tells the customer what the

system will do. Second is Technical Design that allows the

system builders to understand the actual hardware and

software needed to solve customer’s problem.

Conceptual design of the system:

• Written in simple language i.e. customer

understandable language.

• Detailed explanation about system characteristics.

• Describes the functionality of the system.

• It is independent of implementation.

• Linked with requirement document.

Technical Design of the system:

• Hardware component and design.

• Functionality and hierarchy of software components.

• Software architecture

• Network architecture

• Data structure and flow of data.

• I/O component of the system.

• Shows interface.

Modularization: Modularization is the process of dividing

a software system into multiple independent modules

where each module works independently. There are many

advantages of Modularization in software engineering.

Some of these are given below:

• Easy to understand the system.

• System maintenance is easy.

• A module can be used many times as their

requirements. No need to write it again and again.

Coupling: Coupling is the measure of the degree of

interdependence between the modules. A good software

will have low coupling.

Types of Coupling:

• Data Coupling: If the dependency between the

modules is based on the fact that they communicate

by passing only data, then the modules are said to be

data coupled. In data coupling, the components are

independent of each other and communicate through

data. Module communications don’t contain tramp

data. Example-customer billing system.

• Stamp Coupling In stamp coupling, the complete

data structure is passed from one module to another

module. Therefore, it involves tramp data. It may be

necessary due to efficiency factors- this choice was

made by the insightful designer, not a lazy

programmer.

• Control Coupling: If the modules communicate by

passing control information, then they are said to be

control coupled. It can be bad if parameters indicate

completely different behavior and good if parameters

allow factoring and reuse of functionality. Example-

sort function that takes comparison function as an

argument.

• External Coupling: In external coupling, the modules

depend on other modules, external to the software

being developed or to a particular type of hardware.

Ex- protocol, external file, device format, etc.

• Common Coupling: The modules have shared data

such as global data structures. The changes in global

data mean tracing back to all modules which access

that data to evaluate the effect of the change. So it has

got disadvantages like difficulty in reusing modules,

reduced ability to control data accesses, and reduced

maintainability.

• Content Coupling: In a content coupling, one module

can modify the data of another module, or control

flow is passed from one module to the other module.

This is the worst form of coupling and should be

avoided.

Cohesion: Cohesion is a measure of the degree to which

the elements of the module are functionally related. It is

the degree to which all elements directed towards

performing a single task are contained in the component.

Basically, cohesion is the internal glue that keeps the

module together. A good software design will have high

cohesion.

Types of Cohesion:

• Functional Cohesion: Every essential element for a

single computation is contained in the component. A

functional cohesion performs the task and functions.

It is an ideal situation.

• Sequential Cohesion: An element outputs some data

that becomes the input for other element, i.e., data

flow between the parts. It occurs naturally in

functional programming languages.

• Communicational Cohesion: Two elements operate

on the same input data or contribute towards the

same output data. Example- update record in the

database and send it to the printer.

• Procedural Cohesion: Elements of procedural

cohesion ensure the order of execution. Actions are

still weakly connected and unlikely to be reusable. Ex-

calculate student GPA, print student record, calculate

cumulative GPA, print cumulative GPA.

• Temporal Cohesion: The elements are related by

their timing involved. A module connected with

temporal cohesion all the tasks must be executed in

the same time span. This cohesion contains the code

for initializing all the parts of the system. Lots of

different activities occur, all at unit time.

• Logical Cohesion: The elements are logically related

and not functionally. Ex- A component reads inputs

from tape, disk, and network. All the code for these

functions is in the same component. Operations are

related, but the functions are significantly different.

• Coincidental Cohesion: The elements are not

related(unrelated). The elements have no conceptual

relationship other than location in source code. It is

accidental and the worst form of cohesion. Ex- print

next line and reverse the characters of a string in a

single component.

ADVANTAGES OR DISADVANTAGES:

Advantages of low coupling:

• Improved maintainability: Low coupling reduces the

impact of changes in one module on other modules,

making it easier to modify or replace individual

components without affecting the entire system.

• Enhanced modularity: Low coupling allows modules

to be developed and tested in isolation, improving the

modularity and reusability of code.

• Better scalability: Low coupling facilitates the

addition of new modules and the removal of existing

ones, making it easier to scale the system as needed.

Advantages of high cohesion:

• Improved readability and understandability: High

cohesion results in clear, focused modules with a

single, well-defined purpose, making it easier for

developers to understand the code and make changes.

• Better error isolation: High cohesion reduces the

likelihood that a change in one part of a module will

affect other parts, making it easier to

• isolate and fix errors.Improved reliability: High

cohesion leads to modules that are less prone to

errors and that function more consistently,

• leading to an overall improvement in the reliability of

the system.

Disadvantages of high coupling:

• Increased complexity: High coupling increases the

interdependence between modules, making the

system more complex and difficult to understand.

• Reduced flexibility: High coupling makes it more

difficult to modify or replace individual components

without affecting the entire system.

• Decreased modularity: High coupling makes it more

difficult to develop and test modules in isolation,

reducing the modularity and reusability of code.

Disadvantages of low cohesion:

• Increased code duplication: Low cohesion can lead to

the duplication of code, as elements that belong

together are split into separate modules.

• Reduced functionality: Low cohesion can result in

modules that lack a clear purpose and contain

elements that don’t belong together, reducing their

functionality and making them harder to maintain.

• Difficulty in understanding the module: Low cohesion

can make it harder for developers to understand the

purpose and behavior of a module, leading to errors

and a lack of clarity.

Modularity ad Layering

Modularity

The module simply means the software components that

are been created by dividing the software. The software is

divided into various components that work together to

form a single functioning item but sometimes they can

perform as a complete function if not connected with each

other. This process of creating software modules is known

as Modularity in software engineering.

It simply measures the degree to which these components

are made up than can be combined.

Some of the projects or software designs are very complex

that it’s not easy to understand its working and

functioning. In such cases, modularity is a key weapon that

helps in reducing the complexity of such software or

projects.

The basic principle of Modularity is that “Systems should

be built from cohesive, loosely coupled components

(modules)” which means s system should be made up of

different components that are united and work together in

an efficient way and such components have a well-defined

function.

To define a modular system, several properties or criteria

are there under which we can evaluate a design method

while considering its abilities.

These criteria are defined by Meyer. Some of them are

given below:

1. Modular Decomposability –

Decomposability simply means to break down

something into smaller pieces. Modular

decomposability means to break down the problem

into different sub-problems in a systematic manner.

Solving a large problem is difficult sometimes, so the

decomposition helps in reducing the complexity of

the problem, and sub-problems created can be solved

independently. This helps in achieving the basic

principle of modularity.

2. Modular Composability –

Composability simply means the ability to combine

modules that are created. It’s actually the principle of

system design that deals with the way in which two

or more components are related or connected to each

other. Modular composability means to assemble the

modules into a new system that means to connect the

combine the components into a new system.

3. Modular Understandability –

Understandability simply means the capability of

being understood, quality of comprehensible.

Modular understandability means to make it easier

for the user to understand each module so that it is

very easy to develop software and change it as per

requirement. Sometimes it’s not easy to understand

the process models because of its complexity and its

large size in structure. Using modularity

understandability, it becomes easier to understand

the problem in an efficient way without any issue.

4. Modular Continuity –

Continuity simply means unbroken or consistent or

uninterrupted connection for a long period of time

without any change or being stopped. Modular

continuity means making changes to the system

requirements that will cause changes in the modules

individually without causing any effect or change in

the overall system or software.

5. Modular Protection –

Protection simply means to keep something safe from

any harms, to protect against any unpleasant means

or damage. Modular protection means to keep safe

the other modules from the abnormal condition

occurring in a particular module at run time. The

abnormal condition can be an error or failure also

known as run-time errors. The side effects of these

errors are constrained within the module.

Layering

Software engineering is a fully layered technology, to

develop software we need to go from one layer to another.

All the layers are connected and each layer demands the

fulfillment of the previous layer.

https://www.geeksforgeeks.org/software-engineering-introduction-to-software-engineering/

 Fig: The diagram shows the layers of software

development

Layered technology is divided into four parts:

1. A quality focus: It defines the continuous process

improvement principles of software. It provides integrity

that means providing security to the software so that data

can be accessed by only an authorized person, no outsider

can access the data. It also focuses on maintainability and

usability.

2. Process: It is the foundation or base layer of software

engineering. It is key that binds all the layers together

which enables the development of software before the

deadline or on time. Process defines a framework that

must be established for the effective delivery of software

engineering technology. The software process covers all

the activities, actions, and tasks required to be carried out

for software development.

Process activities are listed below:-

• Communication: It is the first and foremost thing for

the development of software. Communication is

necessary to know the actual demand of the client.

• Planning: It basically means drawing a map for

reduced the complication of development.

• Modeling: In this process, a model is created

according to the client for better understanding.

• Construction: It includes the coding and testing of

the problem.

• Deployment:- It includes the delivery of software to

the client for evaluation and feedback.

3. Method: During the process of software development

the answers to all “how-to-do” questions are given by

method. It has the information of all the tasks which

includes communication, requirement analysis, design

modeling, program construction, testing, and support.

4. Tools: Software engineering tools provide a self-

operating system for processes and methods. Tools are

integrated which means information created by one tool

can be used by another.

 Function oriented software design

Structured Analysis

Structured Analysis and Structured Design (SA/SD) is a

diagrammatic notation that is designed to help people

understand the system. The basic goal of SA/SD is to

improve quality and reduce the risk of system failure. It

establishes concrete management specifications and

documentation. It focuses on the solidity, pliability, and

maintainability of the system.

Structured Analysis and Structured Design (SA/SD) is a

software development method that was popular in the

1970s and 1980s. The method is based on the principle of

structured programming, which emphasizes the

importance of breaking down a software system into

smaller, more manageable components.

In SA/SD, the software development process is divided

into two phases: Structured Analysis and Structured

Design. During the Structured Analysis phase, the problem

to be solved is analyzed and the requirements are

gathered. The Structured Design phase involves designing

the system to meet the requirements that were gathered

in the Structured Analysis phase.

The following are the steps involved in the SA/SD process:

1. Requirements gathering: The first step in the SA/SD

process is to gather requirements from stakeholders,

including users, customers, and business partners.

2. Structured Analysis: During the Structured Analysis

phase, the requirements are analyzed to identify the

major components of the system, the relationships

between those components, and the data flows within

the system.

3. Data Modeling: During this phase, a data model is

created to represent the data used in the system and

the relationships between data elements.

4. Process Modeling: During this phase, the processes

within the system are modeled using flowcharts and

data flow diagrams.

5. Input/Output Design: During this phase, the inputs

and outputs of the system are designed, including the

user interface and reports.

6. Structured Design: During the Structured Design

phase, the system is designed to meet the

requirements gathered in the Structured Analysis

phase. This may include selecting appropriate

hardware and software platforms, designing

databases, and defining data structures.

7. Implementation and Testing: Once the design is

complete, the system is implemented and tested.

SA/SD has been largely replaced by more modern

software development methodologies, but its principles of

structured analysis and design continue to influence

current software development practices. The method is

known for its focus on breaking down complex systems

into smaller components, which makes it easier to

understand and manage the system as a whole.

Basically, the approach of SA/SD is based on the Data

Flow Diagram. It is easy to understand SA/SD but it

focuses on well-defined system boundary whereas the JSD

approach is too complex and does not have any graphical

representation.

SA/SD is combined known as SAD and it mainly focuses on

the following 3 points:

1. System

2. Process

3. Technology

SA/SD involves 2 phases:

1. Analysis Phase: It uses Data Flow Diagram, Data

Dictionary, State Transition diagram and ER diagram.

2. Design Phase: It uses Structure Chart and Pseudo

Code.

1. Analysis Phase:

Analysis Phase involves data flow diagram, data

dictionary, state transition diagram, and entity-

relationship diagram.

1. Data Flow Diagram:

In the data flow diagram, the model describes how

the data flows through the system. We can

incorporate the Boolean operators and & or link data

flow when more than one data flow may be input or

output from a process.

For example, if we have to choose between two paths of a

process we can add an operator or and if two data flows

are necessary for a process we can add an operator. The

input of the process “check-order” needs the credit

information and order information whereas the output of

the process would be a cash-order or a good-credit-order.

2. Data Dictionary:

The content that is not described in the DFD is

described in the data dictionary. It defines the data

store and relevant meaning. A physical data

dictionary for data elements that flow between

processes, between entities, and between processes

and entities may be included. This would also include

descriptions of data elements that flow external to the

data stores.

A logical data dictionary may also be included for each

such data element. All system names, whether they are

names of entities, types, relations, attributes, or services,

should be entered in the dictionary.

3. State Transition Diagram:

State transition diagram is similar to the dynamic

model. It specifies how much time the function will

take to execute and data access triggered by events. It

also describes all of the states that an object can have,

the events under which an object changes state, the

conditions that must be fulfilled before the transition

will occur and the activities were undertaken during

the life of an object.

4. ER Diagram:

ER diagram specifies the relationship between data

store. It is basically used in database design. It

basically describes the relationship between different

entities.

2. Design Phase:

Design Phase involves structure chart and pseudocode.

1. Structure Chart:

It is created by the data flow diagram. Structure Chart

specifies how DFS’s processes are grouped into tasks

and allocate to the CPU. The structured chart does not

show the working and internal structure of the

processes or modules and does not show the

relationship between data or data-flows. Similar to

other SASD tools, it is time and cost-independent and

there is no error-checking technique associated with

this tool.

The modules of a structured chart are arranged arbitrarily

and any process from a DFD can be chosen as the central

transform depending on the analysts’ own perception. The

structured chart is difficult to amend, verify, maintain, and

check for completeness and consistency.

2. Pseudo Code:

It is the actual implementation of the system. It is an

informal way of programming that doesn’t require

any specific programming language or technology.

Advantages of Structured Analysis and Structured

Design (SA/SD):

1. Clarity and Simplicity: The SA/SD method emphasizes

breaking down complex systems into smaller, more

manageable components, which makes the system

easier to understand and manage.

2. Better Communication: The SA/SD method provides a

common language and framework for communicating

the design of a system, which can improve

communication between stakeholders and help

ensure that the system meets their needs and

expectations.

3. Improved maintainability: The SA/SD method

provides a clear, organized structure for a system,

which can make it easier to maintain and update the

system over time.

4. Better Testability: The SA/SD method provides a

clear definition of the inputs and outputs of a system,

which makes it easier to test the system and ensure

that it meets its requirements.

Disadvantages of Structured Analysis and Structured

Design (SA/SD):

1. Time-Consuming: The SA/SD method can be time-

consuming, especially for large and complex systems,

as it requires a significant amount of documentation

and analysis.

2. Inflexibility: Once a system has been designed using

the SA/SD method, it can be difficult to make changes

to the design, as the process is highly structured and

documentation-intensive.

3. Limited Iteration: The SA/SD method is not well-

suited for iterative development, as it is designed to

be completed in a single pass.

Data Flow Diagrams
System analysts use process models (i.e. data flow

diagrams, DFDs) to show information flow and processing

in a system. The model usually starts with a context

diagram showing the system bubble surrounded by the

external environment identified by external entities. Data

flows bring information to and from the system process.

A process can explode to a child diagram that presents its

details using data stores, data flows and sub processes.

The diagram leveling process allows complex systems to

be easily partitioned into a stack of simple diagrams with

rigorous balancing of information between levels.

Information structures are defined in an associated data

dictionary.

A process can explode to a child diagram in the same or a

different DFD document. Each developer in a team can

work independently on a DFD document that contains

diagrams for a portion of the entire system.

Structure Charts

Structure charts show module structure and calling

relationships. In a multi-threaded system, each task

(thread of execution) is represented as a structure chart.

Large structure charts are leveled into a stack of

connected diagrams.

State Models

https://www.excelsoftware.com/processmodel
https://www.excelsoftware.com/structuremodel

State models include diagrams and tables that show the

significant states in a system, events that cause transitions

between states and the actions that result.

Task Diagrams

Task diagrams show threads of execution and the real-

time operating system services like queues, event flags

and semaphores that connect them in a multi-tasking

environment. Each task can be associated with its

structure chart representation.

https://www.excelsoftware.com/statemodel
https://www.excelsoftware.com/taskmodel

Object Oriented Analysis and Design

Object-Oriented Analysis (OOA) is the first technical

activity performed as part of object-oriented software

engineering. OOA introduces new concepts to investigate a

problem. It is based on a set of basic principles, which are

as follows-

1. The information domain is modeled.

2. Behavior is represented.

3. The function is described.

4. Data, functional, and behavioral models are divided to

uncover greater detail.

5. Early models represent the essence of the problem,

while later ones provide implementation details.

The above notes principles form the foundation for the

OOA approach.

Object-Oriented Design (OOD): An analysis model

created using object-oriented analysis is transformed by

object-oriented design into a design model that works as a

plan for software creation. OOD results in a design having

several different levels of modularity i.e., The major

system components are partitioned into subsystems (a

system-level “modular”), and data manipulation

operations are encapsulated into objects (a modular form

that is the building block of an OO system.). In addition,

OOD must specify some data organization of attributes

and a procedural description of each operation. Shows a

design pyramid for object-oriented systems. It is having

the following four layers.

1. The Subsystem Layer : It represents the subsystem

that enables software to achieve user requirements

and implement technical frameworks that meet user

needs.

2. The Class and Object Layer : It represents the class

hierarchies that enable the system to develop using

generalization and specialization. This layer also

represents each object.

3. The Message Layer : It represents the design details

that enable each object to communicate with its

partners. It establishes internal and external

interfaces for the system.

4. The Responsibilities Layer : It represents the data

structure and algorithmic design for all the attributes

and operations for each object.

The Object-Oriented design pyramid specifically

emphasizes specific product or system design. Note,

however, that another design layer exists, which forms the

base on which the pyramid rests. It focuses on the core

layer the design of the domain object, which plays an

important role in building the infrastructure for the

Object-Oriented system by providing support for

human/computer interface activities, task management.

Some of the terminologies that are often encountered

while studying Object-Oriented Concepts include:

1. Attributes: a collection of data values that describe a

class.

2. Class: encapsulates the data and procedural

abstractions required to describe the content and

behavior of some real-world entity. In other words, A

class is a generalized description that describes the

collection of similar objects.

3. Objects: instances of a specific class. Objects inherit a

class’s attributes and operations.

4. Operations: also called methods and services, provide a

representation of one of the behaviors of the class.

5. Subclass: specialization of the super class. A subclass

can inherit both attributes and operations from a super

class.

6. Superclass: also called a base class, is a generalization

of a set of classes that are related to it.

Advantages of OOAD:

1. Improved modularity: OOAD encourages the creation

of small, reusable objects that can be combined to

create more complex systems, improving the

modularity and maintainability of the software.

2. Better abstraction: OOAD provides a high-level,

abstract representation of a software system, making

it easier to understand and maintain.

3. Improved reuse: OOAD encourages the reuse of

objects and object-oriented design patterns, reducing

the amount of code that needs to be written and

improving the quality and consistency of the

software.

4. Improved communication: OOAD provides a common

vocabulary and methodology for software developers,

improving communication and collaboration within

teams.

Disadvantages of OOAD:

1. Complexity: OOAD can add complexity to a software

system, as objects and their relationships must be

carefully modeled and managed.

2. Overhead: OOAD can result in additional overhead, as

objects must be instantiated, managed, and interacted

with, which can slow down the performance of the

software.

3. Steep learning curve: OOAD can have a steep learning

curve for new software developers, as it requires a

strong understanding of OOP concepts and

techniques.

User Interface Design

User interface is the front-end application view to which

user interacts in order to use the software. The software

becomes more popular if its user interface is:

• Attractive

• Simple to use

• Responsive in short time

• Clear to understand

• Consistent on all interface screens

There are two types of User Interface:

1. Command Line Interface: Command Line Interface

provides a command prompt, where the user types

the command and feeds to the system. The user needs

to remember the syntax of the command and its use.

2. Graphical User Interface: Graphical User Interface

provides the simple interactive interface to interact

with the system. GUI can be a combination of both

hardware and software. Using GUI, user interprets the

software.

User Interface Design Process:

The analysis and design process of a user interface is

iterative and can be represented by a spiral model. The

analysis and design process of user interface consists of

four framework activities.

1. User, task, environmental analysis, and

modeling: Initially, the focus is based on the profile of

users who will interact with the system, i.e.

understanding, skill and knowledge, type of user, etc,

based on the user’s profile users are made into

categories. From each category requirements are

gathered. Based on the requirements developer

understand how to develop the interface. Once all the

requirements are gathered a detailed analysis is

conducted. In the analysis part, the tasks that the user

performs to establish the goals of the system are

identified, described and elaborated. The analysis of

the user environment focuses on the physical work

environment. Among the questions to be asked are:

• Where will the interface be located physically?

• Will the user be sitting, standing, or performing

other tasks unrelated to the interface?

• Does the interface hardware accommodate

space, light, or noise constraints?

• Are there special human factors considerations

driven by environmental factors?

2. Interface Design: The goal of this phase is to define

the set of interface objects and actions i.e. Control

mechanisms that enable the user to perform desired

tasks. Indicate how these control mechanisms affect

the system. Specify the action sequence of tasks and

subtasks, also called a user scenario. Indicate the

state of the system when the user performs a

particular task. Always follow the three golden rules

stated by Theo Mandel. Design issues such as

response time, command and action structure, error

handling, and help facilities are considered as the

design model is refined. This phase serves as the

foundation for the implementation phase.

3. Interface construction and implementation: The

implementation activity begins with the creation of

prototype (model) that enables usage scenarios to be

evaluated. As iterative design process continues a

User Interface toolkit that allows the creation of

windows, menus, device interaction, error messages,

commands, and many other elements of an

interactive environment can be used for completing

the construction of an interface.

4. Interface Validation: This phase focuses on testing the

interface. The interface should be in such a way that it

should be able to perform tasks correctly and it

should be able to handle a variety of tasks. It should

achieve all the user’s requirements. It should be easy

to use and easy to learn. Users should accept the

interface as a useful one in their work.

Golden Rules:

The following are the golden rules stated by Theo Mandel

that must be followed during the design of the

interface. Place the user in control:

• Define the interaction modes in such a way that does

not force the user into unnecessary or undesired

actions: The user should be able to easily enter and

exit the mode with little or no effort.

• Provide for flexible interaction: Different people will

use different interaction mechanisms, some might use

keyboard commands, some might use mouse, some

might use touch screen, etc, Hence all interaction

mechanisms should be provided.

• Allow user interaction to be interruptible and

undoable: When a user is doing a sequence of actions

the user must be able to interrupt the sequence to do

some other work without losing the work that had

been done. The user should also be able to do undo

operation.

• Streamline interaction as skill level advances and

allow the interaction to be customized: Advanced or

highly skilled user should be provided a chance to

customize the interface as user wants which allows

different interaction mechanisms so that user doesn’t

feel bored while using the same interaction

mechanism.

• Hide technical internals from casual users: The user

should not be aware of the internal technical details

of the system. He should interact with the interface

just to do his work.

• Design for direct interaction with objects that appear

on screen: The user should be able to use the objects

and manipulate the objects that are present on the

screen to perform a necessary task. By this, the user

feels easy to control over the screen.

Reduce the user’s memory load:

• Reduce demand on short-term memory: When users

are involved in some complex tasks the demand on

short-term memory is significant. So the interface

should be designed in such a way to reduce the

remembering of previously done actions, given inputs

and results.

• Establish meaningful defaults: Always initial set of

defaults should be provided to the average user, if a

user needs to add some new features then he should

be able to add the required features.

• Define shortcuts that are intuitive: Mnemonics should

be used by the user. Mnemonics means the keyboard

shortcuts to do some action on the screen.

• The visual layout of the interface should be based on a

real-world metaphor: Anything you represent on a

screen if it is a metaphor for real-world entity then

users would easily understand.

• Disclose information in a progressive fashion: The

interface should be organized hierarchically i.e. on the

main screen the information about the task, an object

or some behavior should be presented first at a high

level of abstraction. More detail should be presented

after the user indicates interest with a mouse pick.

Make the interface consistent:

• Allow the user to put the current task into a

meaningful context: Many interfaces have dozens of

screens. So it is important to provide indicators

consistently so that the user know about the doing

work. The user should also know from which page

has navigated to the current page and from the

current page where can navigate.

• Maintain consistency across a family of applications:

The development of some set of applications all

should follow and implement the same design, rules

so that consistency is maintained among applications.

• If past interactive models have created user

expectations do not make changes unless there is a

compelling reason.

Command Language

A command language is a type of interpreted language

using a command line structure. Command languages are

typically not compiled but are interpreted on the fly. A

prominent example is the MS-DOS computer system that

controlled earlier personal computers where a command

line structure was used to generate user-driven processes.

Command languages have many uses in computer science

and the administration of operating systems. They often

serve to provide immediate responses to end-user events.

For example, a command language for batch processing

has specific commands that help to organize and

manipulate files. Command languages can be clear-cut

ways to implement a set of instructions that might not

need the power of a fully compiled, object-oriented

language for them to function well.

Menu System

This is a menu system designed as the top-level interface

to a general purpose operating system and an extensive

variety of layered software. The system tested was a base

system without customization. This product was released

in the early t980's. Menus were used to access options,

and function keys were used in the applications. On-line

help was available.

Iconic Systems 1 and 2

These systems are both commercially available, iconic,

top-level interfaces that provide access to a variety of

functions including file manipulation, text editing,

graphics, and other applications. Both make extensive use

of icons to represent files, functions, and states. Both also

make extensive use of a mouse as a pointing and selection

device. Both systems were released in the early 1980's.

They differ in many details of presentation, input syntax,

file structure, treatment of help, and hardware

